我们提出了一种有效的神经邻域搜索(N2S),以解决取货和交付问题(PDPS)。具体而言,我们设计了强大的综合注意力,可以使香草自我注意力综合有关路线解决方案的各种特征。我们还利用了两个自定义的解码器,它们会自动学习执行拾取节点对的删除和重新插入以应对优先限制。此外,利用多样性增强方案以进一步改善性能。我们的N2是通用的,并且对两个规范PDP变体进行了广泛的实验表明,它可以在现有神经方法之间产生最新的结果。此外,它甚至超过了众所周知的LKH3求解器在更受限的PDP变体上。我们针对N2S的实施可在线获得。
translated by 谷歌翻译
利用多尺度功能在解决语义细分问题方面表现出了巨大的潜力。聚集通常是用总和或串联(Concat)进行的,然后是卷积(Conv)层。但是,它将高级上下文完全通过了以下层次结构,而无需考虑它们的相互关系。在这项工作中,我们旨在启用低级功能,以通过跨尺度像素到区域关系操作从相邻的高级特征图中汇总互补上下文。我们利用跨尺度上下文的传播,即使高分辨率的低级特征也可以使远程依赖关系也可以捕获。为此,我们采用有效的功能金字塔网络来获得多尺度功能。我们提出了一个关系语义提取器(RSE)和关系语义传播器(RSP),分别用于上下文提取和传播。然后,我们将几个RSP堆叠到RSP头中,以实现上下文的渐进自上而下分布。两个具有挑战性的数据集和可可的实验结果表明,RSP头在语义细分和泛型分割方面都具有高效率的竞争性。在语义分割任务中,它的表现优于DeepLabv3 [1],而在语义分割任务中少75%(多重添加)。
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
To generate high quality rendering images for real time applications, it is often to trace only a few samples-per-pixel (spp) at a lower resolution and then supersample to the high resolution. Based on the observation that the rendered pixels at a low resolution are typically highly aliased, we present a novel method for neural supersampling based on ray tracing 1/4-spp samples at the high resolution. Our key insight is that the ray-traced samples at the target resolution are accurate and reliable, which makes the supersampling an interpolation problem. We present a mask-reinforced neural network to reconstruct and interpolate high-quality image sequences. First, a novel temporal accumulation network is introduced to compute the correlation between current and previous features to significantly improve their temporal stability. Then a reconstruct network based on a multi-scale U-Net with skip connections is adopted for reconstruction and generation of the desired high-resolution image. Experimental results and comparisons have shown that our proposed method can generate higher quality results of supersampling, without increasing the total number of ray-tracing samples, over current state-of-the-art methods.
translated by 谷歌翻译
It has been observed in practice that applying pruning-at-initialization methods to neural networks and training the sparsified networks can not only retain the testing performance of the original dense models, but also sometimes even slightly boost the generalization performance. Theoretical understanding for such experimental observations are yet to be developed. This work makes the first attempt to study how different pruning fractions affect the model's gradient descent dynamics and generalization. Specifically, this work considers a classification task for overparameterized two-layer neural networks, where the network is randomly pruned according to different rates at the initialization. It is shown that as long as the pruning fraction is below a certain threshold, gradient descent can drive the training loss toward zero and the network exhibits good generalization performance. More surprisingly, the generalization bound gets better as the pruning fraction gets larger. To complement this positive result, this work further shows a negative result: there exists a large pruning fraction such that while gradient descent is still able to drive the training loss toward zero (by memorizing noise), the generalization performance is no better than random guessing. This further suggests that pruning can change the feature learning process, which leads to the performance drop of the pruned neural network. Up to our knowledge, this is the \textbf{first} generalization result for pruned neural networks, suggesting that pruning can improve the neural network's generalization.
translated by 谷歌翻译
Time-series anomaly detection is an important task and has been widely applied in the industry. Since manual data annotation is expensive and inefficient, most applications adopt unsupervised anomaly detection methods, but the results are usually sub-optimal and unsatisfactory to end customers. Weak supervision is a promising paradigm for obtaining considerable labels in a low-cost way, which enables the customers to label data by writing heuristic rules rather than annotating each instance individually. However, in the time-series domain, it is hard for people to write reasonable labeling functions as the time-series data is numerically continuous and difficult to be understood. In this paper, we propose a Label-Efficient Interactive Time-Series Anomaly Detection (LEIAD) system, which enables a user to improve the results of unsupervised anomaly detection by performing only a small amount of interactions with the system. To achieve this goal, the system integrates weak supervision and active learning collaboratively while generating labeling functions automatically using only a few labeled data. All of these techniques are complementary and can promote each other in a reinforced manner. We conduct experiments on three time-series anomaly detection datasets, demonstrating that the proposed system is superior to existing solutions in both weak supervision and active learning areas. Also, the system has been tested in a real scenario in industry to show its practicality.
translated by 谷歌翻译
As an important variant of entity alignment (EA), multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) with multiple modalities like images. However, current MMEA algorithms all adopt KG-level modality fusion strategies but ignore modality differences among individual entities, hurting the robustness to potential noise involved in modalities (e.g., unidentifiable images and relations). In this paper we present MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, to dynamically predict the mutual correlation coefficients among modalities for instance-level feature fusion. A modal-aware hard entity replay strategy is also proposed for addressing vague entity details. Extensive experimental results show that our model not only achieves SOTA performance on multiple training scenarios including supervised, unsupervised, iterative, and low resource, but also has limited parameters, optimistic speed, and good interpretability. Our code will be available soon.
translated by 谷歌翻译
The task of video prediction and generation is known to be notoriously difficult, with the research in this area largely limited to short-term predictions. Though plagued with noise and stochasticity, videos consist of features that are organised in a spatiotemporal hierarchy, different features possessing different temporal dynamics. In this paper, we introduce Dynamic Latent Hierarchy (DLH) -- a deep hierarchical latent model that represents videos as a hierarchy of latent states that evolve over separate and fluid timescales. Each latent state is a mixture distribution with two components, representing the immediate past and the predicted future, causing the model to learn transitions only between sufficiently dissimilar states, while clustering temporally persistent states closer together. Using this unique property, DLH naturally discovers the spatiotemporal structure of a dataset and learns disentangled representations across its hierarchy. We hypothesise that this simplifies the task of modeling temporal dynamics of a video, improves the learning of long-term dependencies, and reduces error accumulation. As evidence, we demonstrate that DLH outperforms state-of-the-art benchmarks in video prediction, is able to better represent stochasticity, as well as to dynamically adjust its hierarchical and temporal structure. Our paper shows, among other things, how progress in representation learning can translate into progress in prediction tasks.
translated by 谷歌翻译
Implicit regularization is an important way to interpret neural networks. Recent theory starts to explain implicit regularization with the model of deep matrix factorization (DMF) and analyze the trajectory of discrete gradient dynamics in the optimization process. These discrete gradient dynamics are relatively small but not infinitesimal, thus fitting well with the practical implementation of neural networks. Currently, discrete gradient dynamics analysis has been successfully applied to shallow networks but encounters the difficulty of complex computation for deep networks. In this work, we introduce another discrete gradient dynamics approach to explain implicit regularization, i.e. landscape analysis. It mainly focuses on gradient regions, such as saddle points and local minima. We theoretically establish the connection between saddle point escaping (SPE) stages and the matrix rank in DMF. We prove that, for a rank-R matrix reconstruction, DMF will converge to a second-order critical point after R stages of SPE. This conclusion is further experimentally verified on a low-rank matrix reconstruction problem. This work provides a new theory to analyze implicit regularization in deep learning.
translated by 谷歌翻译
Gradient-based explanation is the cornerstone of explainable deep networks, but it has been shown to be vulnerable to adversarial attacks. However, existing works measure the explanation robustness based on $\ell_p$-norm, which can be counter-intuitive to humans, who only pay attention to the top few salient features. We propose explanation ranking thickness as a more suitable explanation robustness metric. We then present a new practical adversarial attacking goal for manipulating explanation rankings. To mitigate the ranking-based attacks while maintaining computational feasibility, we derive surrogate bounds of the thickness that involve expensive sampling and integration. We use a multi-objective approach to analyze the convergence of a gradient-based attack to confirm that the explanation robustness can be measured by the thickness metric. We conduct experiments on various network architectures and diverse datasets to prove the superiority of the proposed methods, while the widely accepted Hessian-based curvature smoothing approaches are not as robust as our method.
translated by 谷歌翻译